Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, Subramaniam Puvaneswary, Wan Jefri Basirun and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.121$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Hydroxysalicylaldehyde 2-thienoylhydrazone

The two independent molecules of the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, are approximately planar and one is stacked over the other. One of the two molecules interacts with its symmetry-related neighbors to form a hydrogen-bonded helical chain that runs along the shortest axis of the orthorhombic unit cell. The second independent molecule does not form such a chain; instead, it is merely linked to the other independent molecule by a hydrogen bond.

Comment

In the crystal structure of 3-hydroxysalicylaldehyde 2-furoylhydrazone, one molecule is stacked over the other across a center of inversion, and the pair of molecules is linked by hydrogen bonds into a three-dimensional network (Ali et al., 2005).

(I)

With an S atom in place of the O atom in the five-membered heterocyclic ring, the title compound, (I), crystallizes with two symmetry-independent molecules in the asymmetric unit (Fig. 1); one is stacked over the other and the primed molecule is approximately related to the unprimed molecule by a non-

Figure 1
ORTEPII (Johnson, 1976) plot of the two independent molecules of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ S. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii.
crystallographic twofold rotation axis. The thienyl ring is twisted by 10.1 (1) ${ }^{\circ}$ with respect to the $\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$ fragment; the twist in the primed molecule is 15.4 (2) ${ }^{\circ}$. The unprimed molecule propagates along the shortest axis of the unit cell, giving rise to a hydrogen-bonded helical chain (Fig. 2). The primed molecule does not form such a chain; instead, it is merely connected to the unprimed molecule by a hydrogen bond. The difference in the hydrogen bonding interactions arises from the orientation of the H atom of the 3hydroxy substituent.

Experimental

3-Hydroxysalicyldehyde ($0.21 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 2-thienoylhydrazide $(0.22 \mathrm{~g}, 1.5 \mathrm{mmol})$ were heated in ethanol $(40 \mathrm{ml})$ for 2 h . The compound that was isolated upon removal of the solvent was recrystallized from ethanol to give pale yellow-orange crystals.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=262.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.994$ (1) \AA
$b=11.990$ (2) \AA
$c=24.787$ (4) A
$V=2375.8(6) \AA^{3}$
$Z=8$
$Z=8$
$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 814 reflections
$\theta=3.1-22.4^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, faint yellow-orange
$0.38 \times 0.34 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: None
10174 measured reflections
5149 independent reflections

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.045
wR(F}\mp@subsup{F}{}{2})=0.12
S=1.03
5 1 4 9 \text { reflections}
329 parameters
H-atom parameters constrained
w=1/[\mp@subsup{\sigma}{}{2}(\mp@subsup{F}{\textrm{o}}{2})+(0.0638P\mp@subsup{)}{}{2}]
    where }P=(\mp@subsup{F}{\textrm{o}}{2}+2\mp@subsup{F}{\textrm{c}}{2})/
```

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 o \cdots \mathrm{O} 3^{\text {i }}$	0.85	1.82	2.668 (3)	173
$\mathrm{O} 2-\mathrm{H} 2 o \cdots \mathrm{~N} 1$	0.85	1.92	2.656 (3)	144
$\mathrm{N} 2-\mathrm{H} 2 n \cdots 3^{\text {iii }}$	0.85	2.20	3.028 (3)	165
$\mathrm{O} 1^{\prime}-\mathrm{H} 1 o^{\prime} \cdots \mathrm{O}^{\prime}$	0.85	2.24	2.679 (3)	112
$\mathrm{O} 2^{\prime}-\mathrm{H} 2 o^{\prime} \cdots \mathrm{N} 1^{\prime}$	0.85	1.86	2.595 (3)	144
$\mathrm{N} 2^{\prime}-\mathrm{H} 2 n^{\prime} \ldots \mathrm{O} 1^{\text {iii }}$	0.85	2.22	3.017 (3)	156
Symmetry codes: $x-\frac{1}{2},-y+\frac{1}{2},-z+2$	$x+\frac{1}{2},$	$-z+2 ;$	$x+\frac{1}{2},$	$+2 ; \quad \text { (iii) }$

Figure 2
ORTEPII (Johnson, 1976) plot of the helical hydrogen-bonded chain that is formed by the unprimed molecule and its symmetry equivalents.

H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=\mathrm{O}-\mathrm{H}=0.85 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ values set to 1.2 times $U_{\text {eq }}$ of the parent atom. The torsion angles of the hydroxy groups were refined.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment for supporting this study (grant No. IPRA 33-02-03-3055). We acknowledge Mr Xiao-Long Feng of Sun Yat-Sen University for the diffraction measurements.

References

Ali, H. M., Puvaneswary, S., Basirun, W. F. \& Ng, S. W. (2005). Acta Cryst. E61, o1079-o1080.
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

